
COMPARING METHODS FOR DYNAMIC AIRSPACE CONFIGURATION
Shannon Zelinski, NASA Ames Research Center, Moffett Field, CA

Chok Fung Lai, UC Santa Cruz, Moffett Field, CA

Abstract
This paper compares airspace design solutions

for dynamically reconfiguring airspace in response to
nominal daily traffic volume fluctuation. Airspace
designs from seven algorithmic methods and a
representation of current day operations in Kansas
City Center were simulated with two times today's
demand traffic. A three-configuration scenario was
used to represent current day operations. Algorithms
used projected unimpeded flight tracks to design
initial 24-hour plans to switch between three
configurations at predetermined reconfiguration
times. At each reconfiguration time, algorithms used
updated projected flight tracks to update the
subsequent planned configurations. Compared to the
baseline, most airspace design methods reduced delay
and increased reconfiguration complexity, with
similar traffic pattern complexity results. Design
updates enabled several methods to as much as half
the delay from their original designs. Freeform
design methods reduced delay and increased
reconfiguration complexity the most.

Nomenclature
ci = configuration index

d = average total flight delay

n+ = aircraft gained

n- = aircraft lost

N = combined aircraft transfer complexity

si = simulation iteration index

v+ = % volume gained

v- = % volume lost

V = combined volume transfer complexity

α = % flight tracks within 2 miles of boundary

β = avg dist between flow intersections and bounds

γ = num flights with less than 2 min dwell time

Introduction
Airspace management concepts attempt to

mitigate required traffic flow management and allow
more user preference and traffic flexibility. One
form of airspace management is Dynamic Airspace
Configuration, that is reconfiguring airspace
boundaries to correspond with the prevailing demand
traffic and allow more throughput. Today's traffic
flexibility is limited in part due to largely static
airspace design. New algorithmic methods of
airspace design are being developed to allow airspace
to change more dynamically and conform to more
flexible traffic. A prior comparison of algorithm
generated airspace configurations identified strengths
and weaknesses of three airspace partitioning
algorithms [1,2]. The different algorithms each had
different strengths including reduced flight delay,
reduced airspace complexity, and more balanced
workload among airspace sectors.

However, there were some technical limitations
in the previous comparison. Currently, airspace is
reconfigured to accommodate traffic demand, and in
the future, it will reconfigure more dynamically.
However, as a first step, this previous analysis only
compared static configurations. Due to airspace
design algorithm limitations, the number of sectors
was not fixed between compared configurations,
making it difficult to assess their relative benefits.
These algorithms have since evolved to address
identified weaknesses from the comparison as well as
address other considerations such as complexity due
to reconfiguration and traffic pattern interactions with
airspace boundaries. In addition, several other
algorithms have since matured to a level sufficient to
participate in a comparison study.

This paper presents a next round comparison of
newly improved airspace design solutions for
dynamically reconfiguring airspace in response to
nominal daily traffic volume fluctuation. Improved
versions of the three algorithmic airspace design
methods from the previous study and five additional
methods were compared. Each method designed

three-configuration airspace solutions with projected
simulated flight tracks in Kansas City Center at two
times today’s traffic levels. In addition, each method
used updated traffic projections at each
reconfiguration time to update subsequent planned
reconfigurations. Data analysis compared not only
airspace design benefits between different
algorithmic methods, but between design updates
from a single method to assess the benefit of
dynamically updating planned configurations.
Additional compared metrics included traffic pattern
complexity with respect to airspace boundaries and
reconfiguration complexity.

This paper is organized as follows. The
Background section provides background on airspace
design research and specific design methods
compared in this paper. The Method section
describes the methods, including experiment setup,
scenarios, and metrics. Detailed and summary results
are described in the Results section. The paper ends
with Conclusions.

Background
Currently, airspace in both the United States and

Europe is partitioned into functional blocks that may
be combined into fewer large sectors when traffic
volume is low or split into more small sectors when
traffic volume is high. This is actually a simple and
flexible method of adapting to traffic volume
fluctuation. However, configuration schedules are
generated days in advance based on estimated traffic
demand and tactical changes to the configuration
schedules are based on managers' personal
experience and judgment. Staffing constraints limit
the number of sectors that may be open within a
particular group of sectors for which each controller
is trained. In the United States, these groups of
sectors are called areas of specialization (AOS). This
also limits feasible combinations of functional
airspace blocks within a single area. In addition,
overloads may occur in sectors that cannot be further
split.

One body of research is developing algorithms
to build good realistic functional block-based
configuration schedules rather than relying on human
judgment [3-6]. Other research focuses on
redesigning the airspace boundaries themselves [7-
14]. Many of these methods have performed self-
assessments and a few have been compared to each

other [1,2], but the assessments focused on the
designs themselves and not the cost of
reconfiguration.

A human-in-the-loop study conducted at NASA
Ames tested the feasibility of reconfiguring by
moving an airspace boundary on-demand rather than
combining and splitting functional airspace blocks
[15]. The study found that the reconfiguration
operation itself was feasible. However, certain
characteristics of boundary designs with respect to
traffic pattern geometry and of reconfiguration from
one design to the next tended to increase controller
workload and decrease acceptability. Many airspace
design algorithms have since incorporated these
traffic pattern and reconfiguration complexity
considerations into their methods.

This paper compares delay reduction benefits,
traffic pattern complexity, and reconfiguration
complexity of seven airspace design algorithms that
use different approaches. Three of these airspace
design methods attempt to address the
reconfiguration complexity considerations by using
elements of the currently used functional airspace
blocks in their design. DAU Slices modifies a given
configuration by defining five nmi slices of airspace
along the shared edge of a sector pair as Dynamic
Airspace Units (DAUs) [16] to effectively move
airspace boundaries in five nautical mile increments
between sector pairs. CombineSplit uses a set of
given functional airspace blocks and desired number
of sectors as inputs to group the sectors into
configurations [17]. FlightLevel [18] starts with the
AOS boundaries, and partitions the AOS's vertically
by flight level (1,000 ft increments) to achieve the
desired number of sectors for a configuration. By
contrast, CombineSplit has the option of recombining
the base sector units irrespective of AOS boundaries.
Inter-AOS reconfiguration is assumed possible in the
future with the development of generic airspace tools
and procedures that make it easier for individual
controllers to work a larger variety of airspace and
remain current [19].

Four other airspace design methods compared
were more freeform and did not use any elements of
the current functional airspace block design. A new
Graph-based method [14] partitions a graph
representation of the filed flight plan structure and
assigns airspace to each graph partition trying to keep
intersections and major flow paths away from sector

boundaries. The final three methods compared are
improved versions of those compared in previous
work [1,2]. These are SectorFlow, CellGeoSect, and
Voronoi described below.

SectorFlow [10] clusters flight track points
attempting to minimize airspace complexity
parameters. Airspace is then assigned to each flight
track cluster. An improved version of SectorFlow
[20] compared in this paper addresses flow pattern
complexity by including several parameters that
helped the algorithm keep flow intersections away
from sector boundaries and using a gradient search to
refine the boundaries after the initial partition.

CellGeoSect is a hybrid of an airspace cell
clustering method compared in previous work [11]
and an airspace splitting method called GeoSect [21]
used to address traffic pattern complexity. The cell
clustering method represents the airspace as a
tessellation of hexagonal cells and clusters these cells
to maximize flow connectivity within and balance
flight count between clusters. GeoSect modifies the
resulting design by sequentially removing and
redefining the boundary between each pair of sectors
to avoid geometric constraints such as the length and
boundary crossing angles of major flows.

Voronoi [12] represents the airspace using a
Voronoi Diagram. A Genetic Algorithm then
optimizes the Voronoi Diagram representation to
minimize sector overloading. An improved version
of this method, used in this comparison, uses a multi-
stage process to incorporate different kinds of
constraints into the overall optimization [22]. Some
constraints added to address traffic pattern
complexity include trying to keep intersections and
major flow paths away from sector boundaries and
minimizing the number of low dwell time flights.

Method
The following subsections describe the

experiment setup and metrics used to compare the
seven airspace design methods described above.

Experiment Setup
The experiment focused on airspace above

24,000 ft within Kansas City Center (ZKC) in the
United States. ZKC presented a good focus center
because its airspace design is moderately complex.

The entire center shares a common split between low
and high altitude airspace of 24,000 ft. In current
operations, the airspace above 24,000 ft is routinely
reconfigured between combinations of 27 functional
airspace blocks (base sectors) within six areas of
specialization (AOS). Figure 1 shows the current
ZKC sector design, where color indicates AOS and
the altitude split between high and super-high sectors
is shown with the super-high altitude sector labels.

Figure 1. Current ZKC Sector Design

The altitude split between high and super-high
altitude sectors ranges between 35,000 and 38,000 ft.
Higher altitude over-flights (above 33,000 ft),
passing through the center, dominate ZKC's traffic
patterns.

Reconfiguration Scenarios
To reduce experiment complexity, all algorithm

generated reconfiguration scenarios derived from a
three-configuration simplification of historic ZKC
airspace operations on 2/8/2007, a nominal day with
little weather impact. Lai and Zelinski [23] describes
the procedure for processing operational sector
combination data and identified three configurations
as a reasonable baseline representation for 2/8/2007.
All reconfiguration scenarios had the same
reconfiguration times and numbers of sectors in each
configuration as the Baseline. Given the number of
sectors and projected track data for each
configuration time period, each algorithm was free to
partition the ZKC airspace above 24,000 ft both
laterally and vertically. This was a design

improvement over the previous study where
algorithms partitioned only laterally within two
predefined altitude layers.

Figure 2 diagrams the reconfiguration scenario
design. Each box represents a configuration designed
for the corresponding time periods. Orange boxes
identify active configurations. Black boxes identify
planned configurations that were updated before they
could be implemented. The reconfiguration times,
shown in Central Standard Time, are identical to the
Baseline. First, airspace design algorithms use
projected flight tracks for the entire day to design an
initial three-configuration scenario, labeled as Config
1, 2, and 3, with 6, 24, and 19 sectors above 24,000
ft, respectively. Flight traffic is simulated through
Config 1 from 1:45 AM to 8:15 AM, at which point
the airspace design algorithm may use updated
projected flight tracks to modify the remaining two
configurations. These modified configurations are
labeled Config 2ʹ′ and 3ʹ′. The flight traffic simulation
continues through Config 2ʹ′ from 8:15AM to
9:00PM, at which point the airspace design algorithm
may used updated projected flight tracks to modify
the last configuration, Config 3ʹ′ʹ′. The simulation
completes through Config 3ʹ′ʹ′ from 9:00PM to
1:45AM.

Figure 2. Reconfiguration Scenario Design

Sector capacities for each configuration were
assigned using the method presented in Welch et al
[24]. This capacity estimation method validated well
with respect to historical data using a simple
quadratic model based on sector volume and the
average flight transit time through the sector during
the peak traffic period. The Welch capacity
estimation method provided an easily implementable
improvement over the previously used method based
purely on average flight transit time, which tended to
underestimate capacity for large sectors and

overestimate capacity for small sectors. The Welch
model was used to assign Baseline sector capacities
as well. Even though Baseline configurations were
not modified at each reconfiguration, updated
projected flight tracks required that the sector
capacities be updated at each reconfiguration.

Simulation
Simulations were completed using the Airspace

Concept Evaluation System (ACES) [25]. ACES has
been validated to be a good modeler of en-route
trajectories producing similar delay results to real-
world operational statistics for good-weather days
[26, 27]. ACES modeled gate-to-gate flight
operations on airport surfaces and in terminal and en-
route airspace. Air traffic control and traffic flow
management models controlled flights during these
operations to ensure that airspace capacity constraints
were not violated. Lower fidelity models were used
for ground and airport modeling and higher fidelity
models were used for en-route trajectory modeling,
which extended from departure meter fixes to arrival
meter fixes.

The only constraints imposed in simulation were
sector capacities for ZKC airspace above 24,000 ft.
Airport and airspace outside of the design scope were
unconstrained. It is very difficult to decompose the
cause of delays simulated in ACES. Therefore,
unconstraining the airports and airspace outside of
the design scope ensured that all simulated delay was
caused by the ZKC reconfiguration scenario being
tested.

ACES simulated flight tracks from the 2/8/2007
flight schedule. Without capacity constraints from
airports or neighboring centers or weather impacts,
the simulated 2007 traffic produced negligible flight
delays. To stress the simulation into producing more
delay for analysis, a demand generation tool,
AvDemand [28], was used to create a two-times
traffic schedule by cloning flights from the 2/8/2007
schedule. AvDemand also time-shifted flights within
an hour of the original schedule to reduce unnatural
demand peaks.

At the time of this experiment, airspace design
algorithms had not been fully integrated into ACES.
Therefore, the iterative simulation process in Figure 3
was used to mimic a closed loop simulation of the
Figure 2 reconfiguration scenarios.

Figure 3. Iterative Simulation Process

Each row of green boxes represents a separate
ACES simulation. First, ACES generated
unconstrained flight tracks by simulating the 2X
2/8/2007 flight schedule without any capacity
constraints. Airspace design algorithms used the
unconstrained flight tracks to design three initial
configurations. ACES simulated flight traffic subject
to Config 1, 2, and 3 constraints through the end of
Config 1. Projected flight tracks from this point in the
simulation included all traffic modification incurred
within the Config 1 time period. Airspace design
algorithms used these updated projected flight tracks
to design Config 2ʹ′ and 3ʹ′. ACES simulated flight
traffic subject to Config 1, 2ʹ′, and 3ʹ′ constraints
through the end of Config 2ʹ′. Airspace design
algorithms used updated projected flight tracks to
design Config 3ʹ′ʹ′. Finally, ACES simulated flight
traffic subject to Config 1, 2ʹ′, and 3ʹ′ʹ′ all the way to
the and of Config 3ʹ′ʹ′. Even though only the final
iteration from Figure 3 represents the full closed loop
scenario from Figure 2, all simulations were allowed
to complete to analyze the effect each update had on
airspace design performance.

Metrics
Metrics were designed to assess the performance

of individual configuration designs and
reconfigurations between them. Three categories of
metrics include, delay, traffic pattern complexity, and
reconfiguration complexity. Delay is a user benefit
metric. Traffic pattern complexity metrics assess
properties of the traffic patterns with respect to
airspace boundaries that may affect controller

workload. Reconfiguration complexity metrics assess
the transition cost from one configuration to the next.
Metric details are described below.

Delay
Delay is not only costly to airlines and

passengers, but it increases uncertainty by altering
flight plans. Reduced delay relative to the current-day
baseline simulated with 2x traffic quantifies a user
benefit for a set of airspace configurations.

ACES traffic flow management (TFM) monitors
sector capacity and projected sector demand with a 6-
hour look-ahead time window. TFM issues an entry
time restriction to the first flight projected to exceed a
particular sector's capacity. Time restrictions may
propagate and accumulate as the flight passes through
many sectors. Delay may be absorbed en-route with
path stretching maneuvers or at the gate as departure
delay. At the end of each simulation, the total delay
for a flight is the difference between its scheduled
and actual gate arrival times.

Because airports and airspace outside ZKC and
below 24,000 ft were unconstrained, all flight delay
was due to high altitude ZKC airspace capacity
constraints. However, it is difficult to quantify the
individual delay caused by a particular ZKC
configuration. Therefore, average total delays were
computed for each three-configuration simulation.
Let d(si) be the average total delay for ith iteration
simulation si. There are three simulation iterations, s1,
s2, and s3, shown as [Config 1, Config 2, Config 3],
[Config 1, Config 2ʹ′, Config 3ʹ′], and [Config 1,
Config 2ʹ′, Config 3ʹ′ʹ′] in Figure 3.

Traffic Pattern Complexity Metrics
Original airspace design algorithms were mostly

concerned with minimizing and balancing sector
traffic load. However, airspace design must also
accommodate traffic pattern geometry to minimize
controller cognitive complexity. Most algorithms
compared in this study have incorporated some
method of aligning the airspace design with traffic
patterns to minimize this complexity. The following
metrics measure traffic pattern complexities with
respect to sector boundaries.

Controllers prefer major flows and their
intersections to be well within sector boundaries. To
guarantee separation, controllers must be aware of
flights not only within a sector, but also just outside
the sector. Brinton and Cook [29] show how as-flown

flight paths have a statistically significant lower
percentage of flight time within two miles of current
sector boundaries (designed to accommodate these
paths) than great-circle or wind-optimal paths. The
number of aircraft within a threshold distance of a
sector boundary was also included in 17 out of 52
original dynamic density metrics found to be
significant for measuring airspace complexity [30].
Ideally, flows should stay at least three to five nmi
inside the sector boundary to avoid magnifying flight
awareness workload of neighboring sectors and to
leave room for maneuvering but using a two nmi
threshold captures flights that clearly require extra
controller attention.

Let α(sicj) be the percentage of flight tracks
within two miles of a sector boundary for the jth
configuration in the ith simulation iteration. Let α for
a particular method be the average α(sicj) of all
configurations for all iterations weighted by
configuration duration.

Controllers require some time to become
familiar with a flight entering the sector before it
approaches a major intersection. The more time they
have, the more efficiently they may control the flow
safely through the intersection. Therefore,
intersections should be away from sector boundaries.
Brinton and Cook [29] show how there are
statistically significantly fewer as-flown flight
intersections less than ten miles from a sector
boundary than great-circle or wind-optimal path
intersections. Jung et al [31] found that increased
workload during stable configuration periods
correlated to a lower average distance between traffic
flow intersections and sector boundaries.

Let β(sicj) be the average distance between
traffic flow intersections and sector boundaries for
the jth configuration in the ith simulation iteration.
Let β for a particular method be the average β(sicj) of
all configurations for all iterations weighted by
configuration duration.

Jung et al [31] also found that increased
workload during stable configuration periods
correlated to the number of flights with short dwell
time within a sector. When a flight spends very a
small amount time within a sector, controllers often
coordinate to directly handoff the flight to the next
sector without taking ownership. This causes

increased controller workload with no additional
service provided to the flight.

Let γ(sicj) be the average number of short dwell
flights (spending less than two minutes within the a
sector) per quarter hour per sector for the jth
configuration in the ith simulation iteration.

Reconfiguration Complexity Metrics
It is assumed that reconfiguration incurs an

operational cost related to transitioning from one
configuration to another. Homola et al [32] showed
how new on-demand reconfigurations could be
implemented to balance sector traffic load and
minimize over-capacity time periods without
compromising safety, but at the cost of increasing
controller task-load and workload ratings. Lee et al
[15] and Jung et al [31] identified percent airspace
volume and number of aircraft transferred as the
primary contributors to reconfiguration workload for
the same study. Percent airspace volume transferred
impacts controller situational awareness and number
of aircraft transferred impacts controller task-load of
handing off aircraft to their new sectors.

The first step for computing reconfiguration
metrics between two configurations is to map their
sectors to each other. First, sector pairs are mapped in
order of decreasing intersection volume. Then,
sectors with no intersecting volume are mapping in
order of increasing Housdorff distance. Housdorff
distance measures how far one sector is spatially
shifted from another [33]. Consecutive configurations
with different numbers of sectors will have some
unmapped sectors assumed to appear or disappear as
the sector number increases or decreases,
respectively. Let υ+(k1,k2) and υ-(k1,k2) be the volume
gained and lost for sector pair (k1,k2) given as

υ+(k1,k2) = υ(k1) - υ∩(k1,k2)

υ-(k1,k2) = υ(k2) - υ∩(k1,k2)

where k1 is the old sector, k2 is the new sector, and
υ∩(k1,k2) is the shared volume between k1 and k2 seen
in figure 4.

Figure 4. Volume Gained and Lost

Let v+(k1,k2) and v-(k1,k2) be the percent volume
gained and lost with respect to the old sector volume.

v+(k1,k2) = υ+(k1,k2) / υ(k1)

v-(k1,k2) = υ-(k1,k2) / υ(k1)

For unmapped appearing sectors, υ+(−,k2)=υ(k2)
and v+(−,k2)=100%. For unmapped disappearing
sectors, υ-(k1,−)= υ(k1) and v-(k1,−)=100%.

Let V(k1,k2) be a weighted combined volume
transfer complexity given by

V(k1,k2) = wv+ v+(k1,k2) + wv- v-(k1,k2)

where wv+ and wv- are weighting factors.

Operational reconfigurations can be completed
in roughly five minutes [15]. Therefore, the numbers
of aircraft gained (n+(k1,k2,t)) and lost (n-(k1,k2,t))
between k1 and k2 are the numbers of unique aircraft
flying in υ+(k1,k2) and υ-(k1,k2), respectively, during
the five minutes preceding reconfiguration time t. Let
N(k1,k2,t) be a weighted combined aircraft transfer
complexity given by

N(k1,k2,t) = wn+ n+(k1,k2,t) + wn- n-(k1,k2,t)

where wn+ and wn- are weighting factors.

Lai and Zelinski [23] found that in current
reconfiguration operations, there is an average of two
aircraft gained and two aircraft lost. Clustering
operational reconfigurations into the simplified three-
configuration set used in this study altered these
values because the clustered reconfiguration times
were no longer coordinated with the traffic. The
aircraft gained and lost metrics are very sensitive to
reconfiguration time due to traffic fluctuation. In
operation, managers would be free to implement a
reconfiguration any time within a range to minimize
the aircraft transfer complexity. Therefore, N(k1,k2,t)
was calculated for t ranging from thirty minutes
before to thirty minutes after the reconfiguration
design time in five-minutes increments. It was
assumed that the reconfiguration could occur within
any of these five-minute intervals, but the entire
reconfiguration must be completed within the same
interval. This assumption made component-based
airspace design methods such as Baseline,
CombineSplit, DAU Slices, and FlightLevel, that
could reconfigure incrementally, more comparable to
the freeform design methods that may require the
reconfiguration to occur all at once. It was also

assumed that managers would choose the time that
minimized the maximum aircraft transition workload.

Results
The following subsections present results for the

Baseline and designs from seven airspace design
methods.

Delay (d)
Delay measured the benefits of each airspace

design method from the user prospective. Lower
delay demonstrated user benefits. Figure 5 shows the
average total delay for each of the three-configuration
simulation iterations shown in Figure 3. Five of the
methods produced lower delay than Baseline with
their original designs in s1. After the first design
update, all but CombineSplit reduced delay below
Baseline. The most significant delay reduction is due
to the first design update, between s1 and s2. Very
little if any delay reduction is achieved with the
second design update, between s2 and s3. CellGeoSect
showed the most user benefit, reducing the Baseline
delay by more than two thirds. In general, freeform
methods produced lower delays than methods using
Baseline components.

Figure 5. Average Total Delay

Traffic Pattern Complexity
Flight Track Percentage Close to Boundary (α)

The percentage of flights tracks within two nmi
of a sector boundary (α) was computed for each
configuration and iteration. Figure 6 shows average α
results.

Figure 6. Average α Results

Briton and Cook [29] calculated distributions of
percent flight time within two nmi of nation-wide
sector boundaries for as-flown tracks with respect to
the current airspace design and with respect to their
2008 version of SectorFlow airspace design method.
The Baseline'08 and SectorFlow'08 values in Figure
6 were calculated by combining the current airspace
design and 2008 SectorFlow design distributions
from Figure 6 in [29]. Even though the ZKC Baseline
has lower α than the nation-wide Baseline'08, the
improvement from SectorFlow'08 to SectorFlow is
clear. All other methods besides FlightLevel are
between Baseline and Baseline'08. The improvement
of FlightLevel over Baseline is because the method
uses existing AOS footprints, which have larger
lateral area than most individual Baseline sectors.
The overall results indicate that all methods
compared in this study do a sufficient job of keeping
major flows away from sector boundaries.

Flow Intersection Boundary Proximity (β)
Figure 7 shows β for each airspace design

method. The β values for Baseline'08 and
SectorFlow'08 were calculated from Figure 8 in [28]

by multiplying the x and y axis for each column and
summing. Baseline and Baseline'08 are very similar
and all methods except SectorFlow'08 have higher β
than both Baselines. The SectorFlow improvement
over SectorFlow'08 moved flow intersections 2.4
miles farther from sector boundaries on average,
which is approximately 20 seconds of flight time.
Just as with α, FlightLevel has the best β values due
to it's use of AOS footprints.

Figure 7. Average β Results

Number of Short Dwell Flights (γ)
All of the design methods indirectly try to

maximize average flight dwell time through each
sector because it is directly related to maximizing
sector capacity. However, only Voronoi explicitly
tried to minimize the number of short dwell flights.
Figure 8 shows γ averages and quartiles for each
airspace design method. Voronoi and CombineSplit
are the methods with the most similar or lower γ
values than Baseline. CombineSplit is very similar to
Baseline because it uses the same base airspace
volumes. Voronoi is similar or better than Baseline
because it is the only method that explicitly tried to
minimize the number of short dwell flights.

FlightLevel sticks out with γ values that are
consistently more than twice that of Baseline. Due to
FlightLevel vertical partitioning, as the number of
sectors increases, sector vertical range decreases. The
difference in γ between FlightLevel and Baseline is
entirely due to climbing or descending flights passing

through sectors spanning only two or three flight
levels. This did not negatively affect FlightLevel's α
or β because distances for these metrics are measured
relative to lateral boundaries only.

Figure 8. Averages and Quartiles for γ Results

DAU Slices also had a high maximum γ, which
is surprising because the method made minimal
modifications to Baseline designs. However, these
modifications did not explicitly consider traffic
pattern complexity and sometimes resulted in sharp
boundary angles or panhandles. DAU Slices results
demonstrate how small changes can have a large
impact.

Reconfiguration Complexity
Volume Transition Complexity (V)

Figures 9 and 10 show averages and quartiles of
all V between pairs of mapped sectors for the first
and second reconfiguration, respectively. V was
calculated using wv+ = wv- = 0.5.

As seen in Figure 9, only FlightLevel has lower
V than Baseline. All other methods have slightly
higher V than Baseline and freeform methods have
higher V than those using Baseline components. This
trend is exaggerated in the second reconfiguration
seen in Figure 10. Most methods produce more
varied results than Baseline. High maximums were
caused by mapped sector pairs with little or no
overlapping volume. V tended to be larger in the

second reconfiguration than the first for two reasons.
V is a weighted percentage of the sector size prior to
reconfiguration and c2 sector sizes were the smallest.
Also, the second configuration reduced the number of
sectors causing volume gained to dominate V,
whereas volume lost dominated V in the first
reconfiguration. There was no limit on how much
volume a sector could gain but the most volume a
sector could lose was 100%.

Figure 9. V Results for First Reconfiguration

Figure 10. V Results for Second Reconfiguration

Aircraft Transition Complexity (N)
For each simulation iteration and

reconfiguration, the reconfiguration time t used for N
calculation was the time that minimized the
maximum N value. The N calculations used wn+ =1
and wn- =0.2 assuming that accepting and becoming
familiar with new aircraft requires much more
workload than simply handing-off aircraft to another
sector. Figures 11 and 12 display N averages and
quartiles for the first and second reconfiguration,
respectively.

Figure 11. N Results for First Reconfiguration

Figure 12. N Results for Second Reconfiguration

All methods have very similar N values in the
first reconfiguration seen in Figure 11. All averages
are very close to two and only Voronoi has a
maximum greater than the rest, by just one aircraft
transfer. The second reconfiguration has much more
variation between methods. Figure 12 shows
generally higher N values for freeform methods than
those using Baseline components. Only
CombineSplit has consistently lower second
reconfiguration N than Baseline. By contrast,
SectorFlow and Voronoi produce two to three times
higher N than Baseline.

Results Summary and Discussion
Average airspace design performance is

summarized as a percent increase or decrease from
Baseline in Table 1. Yellow cells with values close to
zero are similar to Baseline. Red cells with negative
values are worse and green cells with positive values
are better than Baseline. Darker shaded red and green
cells have increasingly worse or better results,
respectively. Delay performance, d, is based on d(s3)
from Figure 5. Traffic pattern complexity
performances are based on values from Figure 6 for
α, Figure 7 for β, and averages from Figure 8 for γ.
Reconfiguration complexity performances are based
on averages of the averages from Figures 9 and 10
for V and from Figures 11 and 12 for N.

Table 1. Airspace Design Performance Summary

D
A

U
 S

lic
es

C
om

bi
ne

Sp
lit

Fl
ig

ht
Le

ve
l

G
ra

ph
-b

as
ed

Se
ct

or
Fl

ow

C
el

lG
eo

Se
ct

V
or

on
oi

d 23 -57 25 18 30 68 58
α -13 -4 30 -16 -15 -17 -8
β 0 6 35 12 6 9 2
γ -22 2 -88 -22 -29 -25 16
V -18 -11 12 -29 -56 -55 -100
N -56 11 -2 -85 -112 -90 -176

Worse Similar Better

The ultimate goal of each algorithm was to
provide user benefits by reconfiguring airspace. The
results show positive delay reduction benefits (d) in
all but one algorithm, achieving the algorithms' goal.

A few algorithms do better than others at minimizing
traffic pattern complexity (α, β, γ), but all do a fairly
decent job. In general, algorithms that aggressively
change the airspace show more delay reduction
benefits but at higher reconfiguration costs (V, N).
The reconfiguration costs are expected and are
acceptable as long as they are manageable.

The three methods using Baseline elements
performed very differently. DAU Slices achieved
modest benefits with modest negative effects to
traffic pattern and reconfiguration cost. This was
expected as DAU Slices is the most conservative
method, designed to allow small changes to existing
airspace design at high reconfiguration frequency.

CombineSplit was the only method to worsen d.
All other CombineSplit metrics are similar to
Baseline. This method was designed for a more
tactical application, suggesting configurations every
15 minutes over a two-hour horizon. CombineSplit
actually decreased delay in a study comparing DAC
benefits when applied to a more tactical two-hour
weather rerouting scenario when number of sectors
remained the same [34].

FlightLevel is the most unique case with widely
varying results. It achieved modest d improvement
without negatively affecting reconfiguration
complexity. However, the traffic pattern results
suggest that more research is needed to determine if
FlightLevel configurations are feasible. FlightLevel
significantly improved α and β metrics because these
metrics did not consider vertical boundaries. The
significantly worsened γ due to flights climbing or
descending through sectors only a few flight levels
thick may not be acceptable.

Most recent freeform algorithm development has
focused on improving traffic pattern complexity. The
improvement of SectorFlow from SectorFlow'08 in
this area was demonstrated in the Traffic Pattern
Complexity subsection. The most aggressive
freeform methods (Voronoi, SectorFlow, and
CellGeoSect) produced the greatest delay reduction
benefit, but they also significantly increased
reconfiguration complexity. Voronoi was the only
method to reduce delay relative to Baseline without
negatively affecting traffic pattern complexity,
making this the most attractive method if the
reconfiguration complexity increase is manageable.
Reconfiguration complexity thresholds when using

DataComm-based controller tools such as those used
in [15] have yet to be determined. With the right
controller tools and further algorithm refinement to
reduce reconfiguration complexity, achieving the
higher benefits of these more aggressive methods
may be feasible.

Conclusions
A fast-time simulation study compared the

performance of solutions from new airspace design
methods to a representation of current day dynamic
airspace operations. Three categories of metrics
compared delay reduction benefits, traffic pattern
complexity, and reconfiguration complexity. Most
methods achieved benefits by decreasing delay,
which was augmented by allowing strategic airspace
design updates. Most methods also did a reasonable
job of keeping traffic pattern complexity low.
Methods using design elements from Baseline had
more modest benefits and reconfiguration
complexity. Freeform airspace design methods
achieved the highest benefits and highest increase in
reconfiguration complexity. Future research is
needed to determine if high reconfiguration
complexity is acceptable given the right controller
tools. Airspace design methods may also further
refine their algorithms to minimize reconfiguration
complexity.

Acknowledgements
The authors thank all algorithm developers who

submitted reconfiguration scenarios for this study.

References
[1] Zelinski, S., 2009, A Comparison of Algorithm
Generated Sectorizations. In 8th USA/Europe ATM
R&D Seminar, Napa Valley, California.

[2] Zelinski, S., 2010, A Comparison of Algorithm
Generated Sectorizations. In Air traffic Control
Quarterly, Vol. 18, No. 3, pp. 279-301.

[3] Verlhac, C. and S. Manchon, 2001, Optimization
Of Opening Schemes. In 4th USA/Europe ATM
R&D Seminar, Santa Fe, New Mexico.

[4] Bichot, C. E. and N. Durand, 2007, A Tool to
Design Functional Airspace Blocks. In 7th
USA/Europe ATM R&D Seminar, Barcelona, Spain.

[5] Gianazza, D., C. Allignol, and N. Saporito, 2009,
An Efficient Airspace Configuration Forecast. In 8th
USA/Europe ATM R&D Seminar, Napa Valley,
California.

[6] Bloem, M., P. Gupta, and P. Kopardekar, 2009,
Algorithms for Combining Airspace Sectors. In Air
traffic Control Quarterly, Vol. 17, No. 3, pp. 245-
268.

[7] Trandac, H., P. Baptiste, V. and Duong, 2003,
Airspace Sectorization by Constraint Programming.
In Proceedings de la 1re confrence en Recherche
Informatique Vietnam & Francophone (RIVF).

[8] Ehrmanntraut, R. and S. McMillan, 2007,
Airspace Design Process for DYnamic Sectorisation.
In 26th Digital Avionics System Conference, Dallas,
Texas.

[9] Conker, R.S., D.A. Moch-Mooney, W.P.
Niedringhous, B.T. and Simmons, 2007, New
Process for ”Clean Sheet” Airspace Design and
Evaluation. In 7th USA/Europe ATM R&D Seminar,
Barcelona, Spain.

[10] Brinton, C. and S. Pledgie, 2008, Airspace
Partitioning Using Flight Clustering and
Computational Geometry, In 27th Digital Avionics
System Conference, October 26-30, St. Paul,
Minnesota.

[11] Drew, M., 2008, Analysis of an Optimal Sector
Design Method. In 27th Digital Avionics System
Conference, St. Paul, Minnesota.

[12] Xue, M., 2008, Airspace Sector Redesign Based
on Voronoi Diagrams. In AIAA Guidance,
Navigation and Control Conference and Exhibit, Au-
gust, Honolulu, Hawaii. AIAA-2008-7223.

[13] Tien, S. and R. Hoffman, 2009, Optimizing
Airspace Sectors for Varying Demand Patterns Using
Multi-Controller Staffing. In 8th USA/Europe ATM
R&D Seminar, Napa Valley, California.

[14] Li, J., T. Wang, and I. Hwang, 2009, A Spectral
Clustering Based Algorithm for Dynamic Airspace
Configuration, In 9th AIAA Aviation Technology,
Integration and Operations Conference, September
21-23, Hilton Head, South Carolina, AIAA-2009-
7056.

[15] Lee, P.U., T. Prevot, J. Homola, H. Lee, Kessell,
A., C. Brasil, and N. Smith, 2010, Impact of Airspace
Reconfiguration on Controller Workload and Task

Performance, In 3rd Intl. Conference on Applied Hu-
man Factors and Ergonomics, Miami, Florida.

[16] Dynamic Airspace Configuration Benefits.
Report submitted by M. Rodgers et al, under NASA
Contract NNA07BB31C, Washington, DC, August
2008.

[17] Bloem, M. and P. Gupta, 2010, Configuring
Airspace Sectors with Approximate Dynamic
Programming, In 27th Congress of the International
Council of the Aeronautical Sciences, September 19-
24, Nice, France.

[18] Leiden, K., S. Peters, S. and Quesada, 2009,
Flight Level-based Dynamic Airspace Configuration,
In 9th AIAA Aviation Technology, Integration and
Operations Conference, September 21-23, Hilton
Head, South Carolina, AIAA-2009-7104.

[19] Mogford, R., 2010, Generic Airspace Concepts
and Research, In 10th AIAA Aviation Technology,
Integration and Operations Conference, September
13-15, Fort Worth, Texas, AIAA-2010-9159.

[20] Brinton, C., K. Leiden, and J. Hinkey, 2009,
Airspace Sectorization by Dynamic Density, In 9th
AIAA Aviation Technology, Integration and
Operations Conference, September 21-23, Hilton
Head, South Carolina, AIAA-2009-7102.

[21] Sabhnani, G., A. Yousefi, and J. Mitchell, 2010,
Flow Conforming Operational Airspace Sector
Design, In 10th AIAA Aviation Technology,
Integration and Operations Conference, September
13-15, Fort Worth, Texas, AIAA-2010-9377.

[22] Xue, M., 2010, Three Dimensional Sector
Design with Optimal Number of Sectors, In AIAA
Guidance, Navigation, and Control Conference and
Exhibit, August 2-5, Toronto, Ontario Canada.

[23] Lai, C.F. and S. Zelinski, 2010, Operational
Dynamic Configuration Analysis. In 29th Digital
Avionics System Conference, October 3-7, Salt Lake
City, Utah.

[24] Welch, J., 2007, Macroscopic Workload Model
for Estimating EnRoute Sector Capacity. In 7th
USA/Europe ATM R&D Seminar, Barcelona, Spain.

[25] Meyn, L., R. Windhorst, K. Roth, D. VanDrei,
G. Kubat, V. Manikonda, S. Roney, G. Hunter, A.
Huang, and G. Couluris, 2006, Build 4 of the
Airspace Concept Evaluation System. In AIAA

Modeling and Simulation Technologies Conference
an Exhibit, Keystone, Colorado. AIAA- 2006-6110.

[26] Zelinski, S., 2005, Validation of the Airspace
Concept Evaluation System Using Real World Data.
In AIAA Modeling and Simulation Technologies
Conference and Exhibit, San Francisco, California.

[27] Zelinski, S. and L. Meyn, 2006, Validation of
the Airspace Concept Evaluation System for Multiple
Weather Days. In AIAA Modeling and Simulation
Technologies Conference an Exhibit, Keystone,
Colorado.

[28] Huang, A. and D. Schleicher, 2008, Futuristic
US Flight Demand Generation Approach
Incorporating Fleet Mix Assumptions. In AIAA
Modeling and Simulation Technologies Conference
an Exhibit, 18 - 21 August 2008, Honolulu, Hawaii.
AIAA 2008-6678.

[29] Brinton, C. and L. Cook, 2008, Analysis of
Current Airspace Operations and Implications for
Dynamic Airspace Configuration. In AIAA Modeling
and Simulation Technologies Conference and
Exhibit, August 18-21, Honolulu, Hawaii, AIAA-
2008-7224.

[30] Kopardekar, P., 2007, Airspace Complexity
Measurement: An Air Traffic Control Simulation
Analysis. In 7th USA/Europe ATM R&D Seminar,
Barcelona, Spain.

[31] Jung, J., P. Lee, A. Kessell, J. Homola, and S.
Zelinski, 2010, Effect of Dynamic Sector Boundary
Changes on Air Traffic Controllers. In AIAA
Guidance, Navigation, and Control Conference and
Exhibit, August 2-5, Toronto, Ontario Canada,
AIAA-2010-8289.

[32] Homola, J., P. Lee, T. Prevot, H. Lee, A.
Kessell, C. Brasil, N. and Smith, 2010, A Human-in-
the-Loop Exploration of the Dynamic Airspace
Configuration Concept. In AIAA Guidance,
Navigation and Control Conference and Exhibit,

[33] Yousefi, A., R. Hoffman, M. Lowther, B.
Khorrami, H. and Hackney, 2009, Trigger Metrics for
Dynamic Airspace Configuration, In 9th AIAA
Aviation Technology, Integration and Operations
Conference, September 21-23, Hilton Head, South
Carolina, AIAA-2009-7103.

[34] Jung, J., C.F. Lai, and S. Zelinski, 2010,
Analysis of Regional Airspace Reconfigurations in
Presence of Convective Weather, NASA Milestone
report for AS.2.3.05.

30th Digital Avionics Systems Conference
October 16-20, 2011

